

Statistilise metsainventuuri (SMI) ja

maakasutuse, maakasutuse muutuse ja metsan-

duse (LULUCF)

andmehõive ja metoodika

arendamine

Metoodika väljatöötamine

metsamaa maakategooria aktuaalsete

piiride kaardi loomiseks (metsamask)

metsamaa pindala ja selle muutumise edasiseks hin-

damiseks

1 Sissejuhatus: metsamaskid ja mitme definitsiooni väljakutse kaug-

seires

Kaugseire on kujunenud asendamatuks vahendiks metsaressursside hindamisel ja seires,

pakkudes ajakohast ja laiaulatuslikku teavet metsade seisundi ning dünaamika kohta. Üks

keskseid tooteid metsanduslikus kaugseires on metsamask (inglise keeles Forest Mask, FM).

Metsamask on ruumiline andmekiht, tavaliselt kas raster- või vektorformaadis, mis määratleb

metsamaa geograafilise ulatuse, eristades metsa mittemetsaaladest. See on vundamendiks

mitmesugustele metsanduslikele analüüsidele, sealhulgas metsa pindala hindamisele, met-

sade juurdekasvu ja tagavara kalkuleerimisele, raietegevuse ja metsakahjustuste (nt tormi-

kahjud, üraskirüüsted) monitooringule ning elurikkuse uuringutele. Metsamaski täpsus ja kva-

liteet on seega kriitilise tähtsusega, kuna see mõjutab otseselt kõikide järgnevate analüüside

usaldusväärsust. Näiteks kasvava metsa tagavara hindamisel on täpne metsamask hädava-

jalik, et välistada analüüsist mittemetsa pikslid ja vältida tulemuste moonutamist. Traditsioo-

niliselt on metsamaske koostatud ortofotode käsitsi interpreteerimise teel, kuid üha enam ka-

sutatakse selleks satelliitpiltide (nii optiliste kui ka radarandmete) automaatset või poolauto-

maatset klassifitseerimist, rakendades juhendatud või juhendamata meetodeid. Viimastel

aastakümnetel on lisandunud ka laserskaneerimise (LiDAR ehk Light Detection and Ranging;

ALS – Airborne Laser Scanning) andmete kasutamine, mis pakuvad eriti väärtuslikku informat-

siooni metsa vertikaalse struktuuri kohta.

Metsamaski tähtsus metsamajanduses ja keskkonnaseires on pidevalt kasvanud. Üha suure-

nev huvi keskkonnakaitse ja metsade jätkusuutliku majandamise vastu on toonud kaasa va-

jaduse täpsemate ja usaldusväärsemate meetodite järele metsamuutuste kaardistamisel ja

hindamisel. Kaugseire pakub siin efektiivseid lahendusi, võimaldades teavet koguda suurtelt

aladelt ja regulaarselt, ilma et oleks vaja ulatuslikke ja kulukaid välitöid igas konkreetses ko-

has. Metsamaskid on seega väärtuslikud tööriistad metsa omaduste, nagu biomassi akumu-

latsioon, raadamine, metsa tervislik seisund ja looduslike häiringute ulatus, jälgimiseks. Ka

Eestis on digitaalsed lahendused metsamajanduses üha laiemalt kasutusel, lihtsustades ja

kiirendades tööprotsesse ning andmeanalüüsi.

Kaugseirepõhiste metsamaskide loomisel kerkib aga esile fundamentaalne probleem: metsa

definitsioon ei ole universaalne. Nii siseriiklikul kui ka rahvusvahelisel tasandil eksisteerib mit-

meid erinevaid metsa definitsioone, mis varieeruvad peamiste kvantitatiivsete ja kvalitatiiv-

sete parameetrite poolest, nagu minimaalne pindala, puude minimaalne kõrgus, võrastiku

minimaalne liitusprotsent ning maakasutuslikud piirangud. See definitsioonide mitmekesi-

sus tekitab olulisi väljakutseid metsa pindala ja muude metsaressurssi iseloomustavate näi-

tajate võrreldavusele erinevate riikide ja organisatsioonide vahel. Samuti mõjutab see

aruandluskohustuste täitmist, näiteks ÜRO Kliimamuutuste Raamkonventsiooni (UNFCCC)

või ÜRO Toidu- ja Põllumajandusorganisatsiooni (FAO) suunal. Kui metsamask on loodud ühe

konkreetse, jäiga definitsiooni alusel, on selle kasutusala piiratud ning see ei pruugi sobida

analüüsideks, mis nõuavad teistsuguste kriteeriumide rakendamist. Seetõttu on üha olulisem

arendada metoodikaid, mis võimaldaksid luua paindlikke metsamaske, mida saab kohan-

dada vastavalt erinevatele definitsioonidele. Käesoleva ülevaate peamine eesmärk ongi kir-

jeldada, kuidas koostada kaugseire andmete põhjal metsamaske, mis suudaksid anda hin-

nanguid metsa kohta vastavalt mitmesugustele definitsioonidele, pöörates erilist tähelepanu

Eestis kasutatavatele ja rahvusvaheliselt tunnustatud lähenemistele. Vajadus selliste paind-

like lahenduste järele tuleneb otseselt nii rahvusvahelistest kui ka siseriiklikest aruandlusko-

hustustest ning metsanduspoliitika eesmärkidest, mis võivad tugineda erinevatele metsa

määratlustele. Ühtse, jäiga metsamaski kasutamine võib viia metsaressursside ala- või üle-

hindamiseni sõltuvalt kontekstist, mõjutades seeläbi poliitilisi otsuseid, maakasutuse pla-

neerimist ja rahvusvaheliste kohustuste korrektset täitmist. Paindlikkus metsamaskide loo-

misel ja rakendamisel võimaldab ühtlustatud lähenemist erinevate nõuete täitmisel, kasuta-

des selleks ühtset ja kvaliteetset kaugseireandmestikku.

2 Metsa definitsioonide mõistmine: parameetrid ja mõjud

Metsa defineerimine on metsandusliku inventuuri ja seire alustala. Erinevad organisatsioonid

ja riigid kasutavad metsa määratlemiseks mitmesuguseid parameetreid, mis mõjutavad olu-

liselt metsa pindala ja teiste metsaressurssi iseloomustavate näitajate hinnanguid. Paindliku

metsamaski loomiseks on esmalt vaja mõista neid defineerivaid parameetreid ja nende va-

rieeruvust.

2.1 Peamised defineerivad parameetrid

Metsa definitsioonid põhinevad tavaliselt järgmistel kvantitatiivsetel ja kvalitatiivsetel kritee-

riumitel:

• Minimaalne pindala (ha): See on alampiir, millest suuremat puittaimestikuga kaetud
maa-ala loetakse metsaks. See parameeter aitab välistada väga väikesed puude gru-
pid või üksikud puud.

• Minimaalne puude kõrgus (m): Määrab alampiiri puude kõrgusele, mida antud alal
arvestatakse metsa moodustavate puudena. See aitab eristada metsa madalamakas-
vulisest põõsastikust või noorendikest, mis ei ole veel saavutanud metsa tunnuseid.

• Minimaalne võrastiku liitus/katvus (%): See on protsentuaalne näitaja, mis kirjeldab,
kui suurt osa maapinnast peavad puuvõrad katma, et ala kvalifitseeruks metsaks. See
parameeter iseloomustab puistu tihedust.

• Maakasutus: Paljud metsa definitsioonid välistavad alad, mis on küll puudega kaetud,
kuid on peamiselt põllumajanduslikus (nt viljapuuaiad, energiavõsaistandikud põllu-
maal) või linnalises (nt pargid, kalmistud, kui need ei ole spetsiaalselt metsana mää-
ratletud) kasutuses. Mõned definitsioonid, sealhulgas Eesti oma, hõlmavad ka alasid,
mida aktiivselt majandatakse puidu tootmise eesmärgil või puittaimkatte säilitami-
seks, isegi kui need ajutiselt ei vasta kõrguse või liituse kriteeriumidele (nt raiesmikud,
kus oodatakse metsa uuenemist).

2.2 Eesti siseriiklik metsa definitsioon

Eesti Metsaseaduse kohaselt on mets ökosüsteem, mis koosneb metsamaast, sellel kasva-

vast taimestikust ja seal elunevast loomastikust. Praktikas on metsamaa defineerimisel ka-

sutusel järgmised kriteeriumid:

• Metsamaaks loetakse maa-ala, mille pindala on vähemalt 0,1 hektarit.
• Sellel alal peavad kasvama puittaimed, mille kõrgus on vähemalt 1,3 meetrit.
• Nende puittaimede võrad peavad katma vähemalt 30% sellest maa-alast.
• Lisaks loetakse metsamaaks ka sellist ala, mis ei vasta ajutiselt eelnimetatud kritee-

riumidele (nt raiesmik), kuid mida majandatakse puidu tootmise või puittaimkatte säi-
litamise eesmärgil.

2.3 Peamised rahvusvahelised metsa definitsioonid

Rahvusvahelisel tasandil on mitmeid olulisi metsa definitsioone, millest kaks peamist on FAO

ja UNFCCC poolt kasutatavad.

• FAO (ÜRO Toidu- ja Põllumajandusorganisatsioon): FAO definitsiooni kohaselt on
mets maa-ala, mis on suurem kui 0,5 hektarit, kus kasvavad puud, mille kõrgus on (või
potentsiaal saavutada) vähemalt 5 meetrit in situ, ning puuvõrade liitus (või ekviva-
lentne täius) on üle 10%. See definitsioon ei hõlma maad, mis on valdavalt põlluma-
janduslikus või linnalises kasutuses. Oluline on märkida, et FAO definitsioon hõlmab
ka noori looduslikke puistuid ja kõiki rajatud metsakultuure, mis ei ole veel saavutanud
nõutud tihedust või kõrgust, kuid millelt oodatakse nende saavutamist. Samuti kuulu-
vad siia ajutiselt puudeta alad (nt raie või looduslike põhjuste tõttu), millelt oodatakse
looduslikku või kunstlikku taastumist metsaks.

• UNFCCC (ÜRO kliimamuutuste raamkonventsioon): UNFCCC lubab Kyoto proto-
kolli lisas I nimetatud riikidel (Annex I countries) valida oma metsa definitsiooni para-
meetrid teatud kindlaksmääratud vahemikes:

o Minimaalne pindala: 0,05–1,0 hektarit.
o Minimaalne puude kõrgus in situ: 2–5 meetrit.
o Minimaalne võrastiku liitus: 10–30 protsenti. Lisaks ei tohi maa olla peamiselt

põllumajanduslikus või muus mittemetsanduslikus kasutuses. Ka ajutiselt raa-
datud alad, millelt oodatakse metsa taastumist, loetakse metsa hulka.

• FRA (Forest Resources Assessment) definitsioonid: FAO globaalse metsaressurs-
side hindamise (FRA) raames kasutatakse spetsiifilisi kriteeriume. Statistilise Metsain-
ventuur SMI on alates 2005. aastast kasutanud FRA metsa ja muu metsamaa (OWL –
Other Wooded Land) klassifikatsioone paralleelselt siseriikliku definitsiooniga, et ta-
gada andmete rahvusvaheline võrreldavus. FRA 2020 aruandluses Eesti kohta ei kasu-
tatud metsa pindala hindamisel enam riiklikke definitsioone, vaid lähtuti FRA kriteeriu-
midest.

2.4 Definitsiooni valiku mõju metsa pindalale ja omadustele

Erinevate parameetrite (pindala, kõrgus, liitus) künnisväärtuste valik toob kaasa märkimis-

väärseid erinevusi hinnatavas metsa pindalas ja seega ka teistes metsaressurssi iseloomus-

tavates näitajates. Näiteks Eesti riikliku metsa definitsiooni (minimaalne kõrgus 1,3 m, mini-

maalne pindala 0,1 ha, minimaalne liitus 30%) võrdlemisel FAO definitsiooniga (minimaalne

kõrgus 5 m, minimaalne pindala 0,5 ha, minimaalne liitus 10%) on ilmne, et Eesti definitsioon

on mitmes aspektis rangem. See tähendab, et sama kaugseireandmestiku põhjal klassifitsee-

ritakse FAO definitsiooni järgi metsaks tõenäoliselt ka nooremad ja üksikud puud, mis Eesti

definitsiooni järgi veel metsaks ei kvalifitseeru. Sellest tulenevalt võib FAO definitsiooni ko-

hane metsa pindala olla suurem kui Eesti definitsiooni kohane. Need erinevused mõjutavad

otseselt metsamajanduslikke otsuseid, maakasutuspoliitikat ja rahvusvahelist aruandlust.

Maakasutuse kriteeriumid on samuti olulised. Nende eesmärk on eristada metsa teistest

puittaimestikuga kaetud aladest, mis ei täida metsa ökoloogilisi või majanduslikke

funktsioone samal viisil, näiteks viljapuuaiad, energiavõsaistandikud põllumaal või pargid lin-

nades (kui need ei ole spetsiaalselt metsana määratletud). Maakasutuse aspekti arvestamine

nõuab sageli kaugseireandmete kombineerimist teiste andmekihtidega, nagu maakasutus-

kaardid või katastriandmed, et metsamaski korrektselt piiritleda. Ilma sellise integratsioonita

võivad kaugseireandmed üksi (nt ainult spektraalinfo või kõrgusmudel) viia valeklassifitseeri-

miseni, kus näiteks suur viljapuuaed loetakse metsaks.

Järgnev tabel annab ülevaate peamiste metsa definitsioonide parameetritest.

Tabel 1. Peamiste metsa definitsioonide parameetrite võrdlus

Definitsiooni Allikas Minimaalne
Pindala (ha)

Minimaalne
Puude Kõrgus
(m)

Minimaalne
Võrastiku Lii-
tus (%)

Eesti Riiklik (Metsaseadus) 0,1 1,3 30
FAO (ÜRO Toidu- ja Põllumaj.) 0,5 5 10
UNFCCC (ÜRO Kliimamuutuste Raamk.) 0,05–1,0 2–5 10–30
FRA (kasutatud Eesti SMI poolt alates 2005) Sarnane FAO-

le
Sarnane FAO-
le

Sarnane FAO-
le

See tabel illustreerib selgelt, kui suures ulatuses võivad metsa definitsioonid varieeruda.

Paindliku metsamaski loomise võimekus, mis suudab neid erinevaid künniseid ja tingimusi

arvesse võtta, on seega äärmiselt oluline.

3 Kaugseire andmeallikad metsamaski koostamiseks

Metsamaski koostamiseks kasutatakse mitmesuguseid kaugseireandmeid, millest igaühel on

oma spetsiifilised omadused, eelised ja puudused. Optimaalse tulemuse saavutamiseks

kombineeritakse sageli erinevat tüüpi andmeid.

3.1 Optilised satelliitandmed (nt Sentinel-2, Landsat)

Optilised sensorid mõõdavad Päikeselt peegeldunud kiirgust Maa pinnalt erinevates elektro-

magnetilise spektri lainepikkuste vahemikes. Levinumad optilised satelliidid metsanduslikes

rakendustes on Euroopa Kosmoseagentuuri (ESA) Sentinel-2 ja USA Geoloogiateenistuse

(USGS) Landsat seeria satelliidid. Sentinel-2 pakub multispektraalseid andmeid ruumilise la-

hutusega 10, 20 ja 60 meetrit ja teoreetilise korduskülastusajaga umbes 5 päeva ekvaatoril

(tihedam kõrgematel laiuskraadidel). Landsati andmeseeria ulatub tagasi 1970. aastatesse,

pakkudes väärtuslikku ajalist perspektiivi metsa muutuste uurimiseks.

● Eelised: Optilised andmed on laialdaselt kättesaadavad, paljud neist (sh Sentinel-2 ja
Landsat) tasuta. Need sobivad hästi vegetatsiooniindeksite (nt NDVI, EVI) arvutamiseks,
mis on tundlikud taimkatte aktiivsusele ja biomassile. Multispektraal- ja eriti hüperspekt-
raalandmed võimaldavad teatud määral eristada ka puuliike ning hinnata metsa tervis-
likku seisundit ja fenoloogilisi muutusi.

● Puudused: Optiliste sensorite peamine piirang on nende tundlikkus ilmastikutingimus-
tele, eriti pilvkattele ja atmosfääri aerosoolidele. Pilved ja nende varjud takistavad Maa
pinna vaatlemist, mis vähendab andmete tegelikku ajalist kättesaadavust ja võib tekitada
lünki aegridades. Optilised andmed annavad peamiselt informatsiooni metsa horison-
taalse struktuuri ja võrastiku pealmise kihi kohta. Tiheda võrastiku korral võib signaal kül-
lastuda, mistõttu on raskem saada teavet metsa vertikaalse struktuuri või alusmetsa
kohta.

● Eeltöötlus: Enne kasutamist vajavad optilised satelliidiandmed mitmeid eeltöötluse
etappe, sealhulgas geomeetriline korrektsioon (georefereerimine), radiomeetriline kalib-
ratsioon (digitaalsete väärtuste teisendamine füüsikalisteks kiirgustiheduse väärtus-
teks), atmosfäärikorrektsioon (atmosfääri mõjude eemaldamine, et saada pinnapeegel-
duse väärtused) ja mõnikord ka topograafiline korrektsioon (maastiku reljeefist tingitud
valgustustingimuste varieeruvuse vähendamiseks). Oluline on ka pilvede, pilvevarjude ja
muude artefaktide korrektne maskeerimine.

3.2 Aerolaserskanneri (ALS / LiDAR) andmed

ALS on aktiivne kaugseire tehnoloogia, mis kasutab laservalgust kauguste mõõtmiseks. Süs-

teem saadab välja laserimpulsse ja mõõdab nende tagasipeegeldumise aega ja intensiivsust,

luues Maa pinnast ja sellel asuvatest objektidest (sh vegetatsioonist) tiheda kolmemõõtme-

lise (3D) punktipilve. Metsanduses kasutatakse peamiselt lennukitelt (ALS) või droonidelt ko-

gutud LiDAR-andmeid.

● Eelised: LiDAR võimaldab erakordselt täpselt mõõta puude kõrgust, võrastiku

vertikaalset struktuuri, üksikute puude võrade kuju ja maapinna reljeefi ka tiheda taim-
katte all. Sellest saab tuletada ülitäpseid digitaalseid maapinnamudeleid (DTM – Digital
Terrain Model) ja digitaalseid pindmudeleid (DSM – Digital Surface Model). Nende kahe
mudeli vahe annab võrastiku kõrgusmudeli (CHM – Canopy Height Model), mis näitab ve-
getatsiooni kõrgust maapinnast. LiDAR on vähem tundlik ilmastikutingimustele kui opti-
lised sensorid (kuigi tugev vihm või udu võivad mõjutada) ja suudab tänu laserkiire laiale
jäljele saada võrastikust mitu peegeldust.

● Puudused: LiDAR-andmete kogumine on tavaliselt kulukam ja ajamahukam kui satelliit-
kaugseire, eriti kui on vaja katta suuri alasid. Andmemahud on samuti väga suured, nõu-
des spetsiifilist tarkvara ja arvutusvõimsust töötlemiseks.

● Eeltöötlus: LiDAR-punktipilvede eeltöötlus hõlmab sageli müra (valepunktide, nt lindude
või atmosfääriosakeste peegelduste) eemaldamist, maapinna punktide klassifitseeri-
mist (et eraldada need vegetatsiooni ja hoonete punktidest DTM-i loomiseks) ning punk-
tipilve normaliseerimist (maapinna reljeefi mõju eemaldamine, et saada iga punkti kõr-
gus maapinnast).

3.3 Andmete fusioon ja integreerimine

Kuna igal andmetüübil on oma tugevused ja nõrkused, siis sageli parima tulemuse metsa-

maski ja teiste metsanduslike parameetrite hindamisel annab erinevate andmeallikate kom-

bineerimine ehk fusioon. Näiteks LiDAR-andmetest saadud täpne kõrgusinfo (CHM) koos op-

tiliste satelliitandmete (nt Sentinel-2) spektraalse informatsiooniga võib oluliselt parandada

metsaalade eristamise ja klassifitseerimise täpsust võrreldes kummagi andmetüübi eraldi

kasutamisega. Optilised andmed annavad teavet vegetatsiooni tüübi ja seisundi kohta, sa-

mas kui LiDAR täpsustab selle vertikaalset struktuuri. Eestis on SMI andmete integreerimine

Sentinel-2 ja ALS andmetega näidanud paljulubavaid tulemusi metsa kasvava tagavara en-

nustamisel, kasutades selleks masinõppe meetodeid.

Andmetüüpide valikul ja kombineerimisel on oluline silmas pidada, et ükski kaugseire and-

metüüp ei ole universaalselt parim kõikide metsa definitsiooni parameetrite (kõrgus, liitus,

pindala, struktuur) tuletamiseks. Optimaalne lahendus peitub sageli andmete fusioonis, kus

kasutatakse ära iga andmetüübi spetsiifilisi tugevusi vastavalt konkreetse definitsiooni nõue-

tele. Näiteks kui definitsioon rõhutab puude kõrgust, on LiDAR-andmed asendamatud. Kui

oluline on eristada erinevaid puuliike või hinnata lehestiku seisundit, on multispektraal- või

hüperspektraalandmed väärtuslikud. Ilmastikukindluse ja struktuuriinfo saamiseks tihedates

metsades võib SAR olla kasulik. Seega, paindliku metsamaski loomiseks, mis suudab arves-

tada erinevate definitsioonide parameetritega, tuleb hoolikalt valida ja potentsiaalselt kombi-

neerida erinevaid kaugseire andmeallikaid.

Sõltumata valitud andmeallikast või hilisemast klassifitseerimismeetodist, on andmete eel-

töötluse kvaliteet kriitilise tähtsusega lõpliku metsamaski täpsusele. Igal andmetüübil on

spetsiifilised eeltöötluse etapid, mille eesmärk on eemaldada sensori-, atmosfääri- ja

maastikumõjud ning teisendada algandmed füüsikaliselt tähenduslikeks väärtusteks (nt pin-

napeegeldus, radari tagasihajumise koefitsient, normaliseeritud punktikõrgused). Vigane või

ebapiisav eeltöötlus (nt puudulik atmosfäärikorrektsioon optilistel piltidel, ebakorrektne

georefereerimine või haavelmüra halb eemaldamine SAR-andmetel) levib vigadena edasi

kogu analüüsi ahelas ja viib paratamatult ebatäpse metsamaskini. Näiteks pilvede ja nende

varjude korrektne maskeerimine optilistel satelliitpiltidel on hädavajalik, et vältida nende

alade valeklassifitseerimist. Seega on hoolikas ja korrektne andmete eeltöötlus vundament

usaldusväärse metsamaski loomiseks, mis suudab erinevaid definitsioone adekvaatselt hin-

nata.

4 Andmetöötlus tarkvara

Projekti eesmärk on määratleda alad, mis kvalifitseeruvad metsamaaks. Metsamaa definee-

rimine on keerukas, kuna see on maakasutuse kategooria, mis ei sõltu ainult puittaimestikust

(maakattest), vaid eelkõige maa-ala kasutusotstarbest. Projekti nõuete kohaselt oli vajalik op-

timeerida mahukate andmete analüüsi ning tagada saadava tulemuse maksimaalne täpsus.

Sellest lähtuvalt viidi läbi sisendandmete, vajaliku tarkvara ja kasutatavate algoritmide põhja-

lik analüüs. Vaatluse all olid nii Python kui ka tarkvarapakett R. Optimaalse andmetöötluse ja

kogu andmetöötlusprotsessi tervikliku lahenduse leidmiseks osutus hetkel parimaks valikuks

R.

Töö käigus analüüsiti erinevate protseduuride andmetöötluskiirust ja mälukasutust. Oluline

kriteerium oli andmetöötluse teostatavus ka väiksemal lauaarvutil, vältides vajadust eraldi

klastri järele. Kuna andmemahud on erakordselt suured, on kriitilise tähtsusega andmetööt-

lusprotsess jagada etappideks selliselt, et tavapärane arvuti suudaks vajaliku andmestiku

edukalt töödelda.

4.1 Andmetöötlus paketid

Antud projekti andmed on väga erinevates vormingutes, mistõttu tuleb ka neid andmeid lu-

geda erinevate pakettidega. Andmete lugemiseks ja kirjutamiseks on kasutatud järgnevaid

pakette:

• Rasterandmed – terra (versioon 1.8-86)

• Vektorandmed – sf (versioon 1.0-23)

• LiDARi andmed – lidR (versioon 4.2.2)

5 Andmestikud

5.1 Sentinel-2 andmed

Kaugseire andmetest on kasutusel Sentinel-2 andmed ning need laaditakse alla Copernicus-

e andmeportaalist. See võimaldab kasutada kogu Sentinel-2 aegrida. Käesoleva projekti raa-

mes ei ole kasutatud Eesti EstHUB süsteemi, kuna avalikult on seal saadaval vaid viimase

kahe aasta andmed ning eraldi ei ole ette projekti raames nähtud EstHUB andmetöötluskesk-

konna kasutust, kuna kokku tuleb kombineerida erinevaid andmeid ning enamust nendest ei

ole EstHUBis saada. Seetõttu moodustab Sentinel-2 andmestik väikse osa kogu andmetööt-

lusest ning otstarbekam on vajalikud andmed alla laadida Copernicus-e andmeportaalist.

Copernicus võimaldab andmete automaatselt alla laadimist ning kerge vaevaga on võimalik

sama andmete alla laadimise protseduuri kohandada ka EstHUB-i jaoks, aga kuna nendel on

päringute parameetrid pisut erinevad, siis varasemate andmete jaoks on antud projekti käigus

keskendutud Copernicus andmeportaalile. Kui edasine töötlus on keskendunud vaid viima-

sele kahele aastale, siis on võimalik kogu süsteem üles ehitada ka EstHUBist andmete laadi-

misele.

Tuleb arvestada, et mõlemas süsteemis peab kasutaja olema registreeritud ning andmete alla

laadimine eeldab ka kasutaja autentimise funktsiooni.

5.2 LiDAR-i andmed

Metsa mõõtmete tuvastamiseks kasutatakse LiDAR-i andmeid, mis laaditakse alla Maa- ja

Ruumiameti geoportaalist. Nendest andmetest kasutatakse ainult tava ja metsanduslikku

lendu.

5.3 Eesti Topograafia andmekogu

Metsa puhul on tegemist maakasutuse kategooriaga, mistõttu tuleb arvestada ka sellega, et

kõik puud ei ole alati metsamaa. Sellest tulenevalt tuleb eristada mitte-metsamaal kasvavad

puud. Projekti käigus eraldi meetodit nende tuvastamiseks välja ei töötata ning selleks kasu-

tatakse ETAK andmestikust alade filtreerimist erinevate kihtide kaupa. Need andmed saab

alla laadida kas Maa- ja Ruumiameti geoportaalist

Alad, millel metsamaad ei tuvastata on järgmised:

• õuealad - ETAK kiht e_302_ou_a

• hooned - ETAK kiht e_401_hoone_ka

• teed – ETAK kiht e_501_tee_a

• vooluveekogud – ETAK kiht e_203_vooluveekogu_a

• seisuveekogud ETAK kiht e_202_seisuveekogu_a

Lisaks vaadeldakse ka joonobjekte, millel arvestatakse selle laiusega vähemalt 3 m:

• elektriliinid – ETAK kiht e_601_elektriliin_j

• vooluveekogud – ETAK kiht e_203_vooluveekogu_j

• teed – ETAK kiht e_501_tee_j

6 Satelliidiandmete töötlus

6.1 Metoodika üldine põhimõte

Tuleb arvestada, et LiDARi andmeid ei ole ühelgi aastal kogu Eesti kohta ning seetõttu on va-

jalik tuvastada ka konkreetse aasta kohta kogu metsamaa ala. Selleks saab kasutada satellii-

diandmeid.

Käesolev töö on keskendunud Sentinel-2 andmetele, mis laaditakse alla Copernicus andme-

portaalist. Tuleb arvestada, et üks päev ei kata kogu riiki ning satelliitpiltide puhul esineb pilvi,

mis ei võimalda kogu pilti alati kasutada. Satelliit lendab orbiidil ning need orbiidid on num-

merdatud. Antud töö puhul kasutatakse neid satelliitpilte, mis on orbiitidelt 36, 136 ja 79.

Need on orbiidid, mis katavad vähemalt poolt Eestis ning võimaldavad piisavalt usaldusväär-

selt arvutada metsasuse tõenäosuse kaarti. Satelliitpildi nimes kajastub see vastavalt

R036, _R136_* ja *_R079_*.

Joonis 1. Orbiidi 122 piltide kattuvus Eestiga.

Joonis 2 Orbiidi 36 piltide kattuvus Eestiga.

Joonis 3 Orbiidi 79 piltide kattuvus Eestiga.

Joonis 4 Orbiidi 136 piltide kattuvus Eestiga.

Joonis 5 Orbiidi 93 piltide kattuvus Eestiga.

Satelliitpiltide töötlemiseks kasutame paketti terra, mis võimaldab lugeda R-is andmestike

gruppide kaupa (subdataset). Funktsioon rast võimaldab ette anda ka parameetrit subds ning

sellele vastavalt järjekorra numbrit. Parameetriga subds = 1 loetakse sisse kihid B4, B3, B2,

B8 ehk kõik 10 m piksliga kihid.

Andmetöötluse kiirendamiseks on koostatud vastavus EPK10T ruutude ja Sentinel-2 kaardi-

lehtede süsteemile, et vältida topelt arvutusi ning tööd oleks võimalik korraldada paralleelselt

EPK10T ruutude alusel. See on optimaalne andmemaht, et ei koormaks mälu üle.

Satelliitpiltide puhul loetakse sisse esmalt satelliidiandmed ning samuti sellele pikslile vastav

treeningandmestiku kiht. Käesoleva töö käigus kasutati treeningandmeteks SMI proovitükkide

andmeid, kus

Käesoleva töö käigus katsetati erinevaid masinõppe lahendusi pikslite klassifitseerimiseks,

aga arvutusmahult osutus kõige otstarbekamaks kasutada RandomForest funktsiooni pake-

tis ranger.

Satelliitpiltide puhul tuleb arvestada, et piltide valik ei ole alati sobilik, sest vegetatsioonipe-

rioodi jooksul pikslite väärtused varieeruvad ning erinevad maakasutuse kategooriad võivad

olla spektraalselt väga sarnased.

Klassifitseerimise puhul võib küll esineda treeningandmetes ka mõningasi muutusi, aga kok-

kuvõttes marginaalsed muutused aitab see siiski tuvastada. Kui õpetusandmestikus on vähe-

sel määral nö muutunud piksleid, siis see mõjutab marginaalselt klassifitseerimise tõenäo-

sust, aga muutunud pikslile omistatakse uue klassi tõenäosus.

6.2 Sentinel-2 andmete kogumine ja filtreerimine

Metoodika algab vajalike Sentinel-2 satelliitpiltide nimekirja koostamisega, kasutades Coper-

nicus Data Space'i kataloogi (endine Sentineli Copernicus Open Access Hub).

• Ajavahemik: Pildid valitakse vahemikust 1. mai kuni 30. september määratud aasta

kohta.

• Geograafiline ulatus (BBox): Andmed piiratakse Eesti ala katvale ristkülikule.

• Pilvisuse piirang: Lubatakse pildid, mille pilvisus on vahemikus 0% kuni 30%.

• Tootetüüp: Kasutatakse S2MSI2A toodet, mis on atmosfääri poolt korrigeeritud (Level-

2A).

• Orbiidi filtreerimine: Andmekvaliteedi ja järjepidevuse tagamiseks filtreeritakse välja

pildid, mis on saadud kindlatelt suhtelistelt orbiidinumbritelt (36, 136, 79).

• Kvaliteedikontroll: Iga kuupäeva kohta peab olema üle 5 pildi, et tagada piisav geog-

raafiline katvus treeninguks ja analüüsiks.

• Nimekirja loomine: Filtreeritud andmetest koostatakse CSV-fail, mis sisaldab allalaa-

dimiseks vajalikku infot (nimi, GUID, kuupäev, ruut).

6.3 Sentinel-2 andmete allalaadimine

Järgmises etapis laaditakse kättesaadud nimekirja alusel puuduvad Sentinel-2 paketid (ZIP-

failid) Copernicus Data Space'ist alla.

• API/Klassi kasutamine: Allalaadimiseks kasutatakse eelduslikult defineeritud copsi R6

klassi, mis haldab autentimist ja juurdepääsuloa (tokenite) uuendamist.

• Andmete päring: Kasutatakse httr2 paketti, et esitada päringud Copernicus Download

API-sse, kasutades iga toote GUID-d.

• Salvestamine: Iga ZIP-fail salvestatakse spetsiifilisse kausta struktuuri.

• Puuduva kontroll: Allalaadimine toimub ainult siis, kui vastavat faili kohapeal veel ei

eksisteeri.

6.4 RandomForest mudeli treenimine

Klassifitseerimiseks kasutatakse Random Forest (Juhuslik Mets) masinõppe algoritmi. Mu-
del treenitakse eraldi iga unikaalse ja sobiva Sentinel-2 pildistuspäeva kohta, et arvestada fe-
noloogiliste erinevustega.

Random Forest valiti järgmistel põhjustel, mis sobivad metsamaa kaugseireks:

• Müra ja vigade taluvus: Kuna satelliitpiltidel võib esineda atmosfäärihäireid või eba-
täpseid piksliväärtusi (müra), on paljudest otsustuspuudest koosnev ansambel-mudel
stabiilsem kui üksikud mudelid.

• Mittelineaarsus: Seosed spektraalkanalite ja metsa omaduste vahel ei ole alati li-
neaarsed. Random Forest suudab tõhusalt modelleerida keerulisi ja mittelineaarseid
seoseid ilma andmete eelneva normaliseerimise vajaduseta.

• Korreleeruvad tunnused: Sentinel-2 kanalid on omavahel tugevas korrelatsioonis (nt
B2 ja B3). Random Forest tuleb multikolineaarsusega toime paremini kui paljud teised
klassifitseerijad.

Õpetusandmestiku ettevalmistamine ja tasakaalustamine

• Lähteandmed: Kasutatakse statistilise metsainventuuri (SMI) andmeid.

• Ajaline filter: Kasutatakse treeningpunkte, mis on kogutud klassifitseeritava aasta ja
eelneva nelja aasta jooksul ehk ühe SMI perioodi (5 aasta) kõik proovitükid. See tagab,
et kogu Eesti on ruumiliselt ühtlaselt kaetud ja esindatud piisava hulga punktidega.

• Ruumiline filter: Selleks, et vältida metsa serva lähedal olevaid proovitükke, kasuta-
takse ETAK puittaimestiku kihti esmaseks filtreerimiseks, kus välja jäetakse need proo-
vitükid, mis asuvad sellele piirile lähemal kui 20 m ehk kahe piksli jagu satelliitpildil.

• Klasside tasakaalustamine: Maakategooriate pindalad on väga varieeruvad ning sel-
leks, et need ei oleks mudeli koostamisel väga tasakaalust väljas, kasutatakse vaid
kahte klassi: metsamaa ja mitte-metsamaa. Kuna Eestis on metsasus ca 50%, siis on

need kaks klassi võrdselt esindatud ning mudeli tulemus ei ole kallutatud ebavõrdsete
klasside hulga tõttu.

Mudeli hüperparameetrid

Mudeli seadistamisel on eesmärgiks vähendada ülesobitamist (overfitting) ja tagada mudeli
üldistusvõime erinevatel kuupäevadel. Rakendatakse järgmisi printsiipe:

• Puude arv (n_estimators): Kasutatakse piisavalt suurt arvu puid (käesolevas töös 30),
et tagada mudeli stabiilsus ja vähendada ennustuste dispersiooni. Pärast teatud piiri
(umbes 100 puud) mudeli täpsus oluliselt ei suurene, kuid arvutusressurss kasvab,
seega on valitud optimaalne vahemik.

• Puu maksimaalne sügavus (max_depth): Puude sügavust ei piirata liiga rangelt, et
võimaldada mudelil õppida peeneid erinevusi spektraalsignatuurides, kuid vajadusel
kasutatakse piiranguid koos min_samples_split parameetriga, et vältida üksikute erin-
dite (outliers) päheõppimist.

• Tunnuste valik (max_features): Igas sõlmes (split) kaalutakse alamhulka tunnustest
(tavaliselt ruutjuur tunnuste koguarvust). See tagab, et puud on omavahel vähem kor-
releeritud (dekorreleerimine), mis omakorda tõstab ansambli täpsust, eriti olukorras,
kus mõned kanalid (nt B11 ja B12) on märgalade tuvastamisel domineerivad.

• Kriteerium: Puude hargnemisel kasutatakse Gini ebapuhtuse (Gini impurity) indek-
sit, mis on standardne ja arvutuslikult efektiivne meetod binaarse klassifitseerimise
optimeerimiseks.

Mudeli andmeteks kasutatakse järgmisi spektraalkanaleid.

Nähtava valguse kanalid (10 m): B2, B3, B4

Need 10-meetrise eraldusvõimega ribad (Sinine, Roheline, Punane) moodustavad klassifit-
seerimise "vundamendi".

• Ruumiline täpsus: Kuna need on kõrgeima lahutusega (10 m), aitavad need täpselt
paika panna metsaeraldiste piirid, teed, sihid ja lagendikud.

• Klorofülli neeldumine: Eriti oluline on punane kanal (B4), kus toimub tugev klorofülli
neeldumine. See on baasiks taimkatteindeksite (nagu NDVI) arvutamisel, mis näitab
biomassi üldist hulka.

Lähi-infrapuna ja "Punane Serv" (NIR & Red Edge): Puittaimestiku eristamine

See on analüüsi kõige kriitilisem osa. Tavalise RGB pildi peal on nii heinamaa kui ka mets "ro-
helised", kuid spektraalselt on nad väga erinevad just selles vahemikus.

Miks on vaja mitut NIR kanalit (B5–B8A)?

• Punane serv (Red Edge - B5, B6, B7): Need 20 m kanalid katavad kitsa spektriosa,
kus taimede peegeldus tõuseb järsult punasest (madal peegeldus) lähi-infrapunani
(kõrge peegeldus).

o Erinevus roht- ja puittaimede vahel: Puittaimestikul (metsal) ja rohttaimesti-
kul (põllud, niidud) on raku ehitus ja lehtede asetus erinev. See muudab "pu-
nase serva" tõusu nurka ja asukohta. Kasutades kanaleid B5, B6 ja B7, saab
luua indekseid (nt NDRE), mis suudavad eristada tihedat metsa madalast ro-
hust või võsast paremini kui tavaline NDVI.

• Lai vs Kitsas NIR (B8 vs B8A):

o B8 (10 m): See on laiema spektriga ja parema ruumilise lahutusega. See on va-
jalik biomassi detailseks kaardistamiseks (metsa tihedus).

o B8A (20 m): See on kitsam riba, mis on spetsiifiliselt disainitud vältima
veeauru mõju atmosfääris. Kombineerides B8A ja punase serva kanaleid, saab
täpsemini hinnata lehepinnaindeksit (LAI) ja eristada lehtpuid okaspuudest.

Kokkuvõtvalt: Kombinatsioon kanalitest B5–B8A võimaldab eristada liigilist koosseisu ja
struktuuri (nt kas tegemist on noore võsa, küpse metsa või heinamaaga), mida ainult ühe NIR
kanali abil teha ei saaks.

Lühilaine infrapuna (SWIR): B11 ja B12 märgalade tuvastamiseks

SWIR kanalid (Short-Wave Infrared) on 20 m eraldusvõimega ja reageerivad peamiselt veesi-
saldusele taimedes ja pinnases, samuti ligniini ja tselluloosi sisaldusele.

• Märgalade ja veerežiimi eristamine: Vesi neelab SWIR kiirgust väga tugevalt (pee-
geldus on madal).

o Kuiv mets vs märg mets: Terve ja kuiv okasmets peegeldab SWIR kanaleid
teatud määral tagasi. Soostunud metsade või lagedate märgalade puhul on
pinnas ja taimestik veest küllastunud, mistõttu B11 ja B12 väärtused langevad
märgatavalt madalamale.

• Struktuuri tuvastus (B11/B12): Lisaks niiskusele aitavad need kanalid eristada vanu
metsi (rohkem varjusid ja keerulisem struktuur, mis neelab SWIR-i) noorendikest (üht-
lasem peegeldus).

SCL (Scene Classification Layer): Kvaliteedikontroll

SCL ei ole otsene satelliidikanal, vaid eeltöötluse tulemus (mask), mis on metsaanalüüsis hä-
davajalik.

• Andmete puhtus: Metsa kaugseire on kasutu, kui analüüsitakse kogemata pilvi või
nende varje metsa pähe. SCL kiht võimaldab enne klassifitseerimist eemaldada

pikslid, mis on vigased, pilves või pilvevarjus, tagades, et B2–B12 kanalite info on tõe-
poolest maapinnalt pärit.

6.5 Päevapõhine treenimine

Metsamaa ja taimkatte klassifitseerimisel on kriitilise tähtsusega arvestada taimestiku ajalist

dünaamikat. Kuigi satelliitpiltide piksliväärtuste mediaani (mediaanpildi) arvutamine on levi-

nud viis pilvevabade mosaiikide loomiseks, on klassifitseerimismudelite täpsuse huvides pa-

rem treenida mudel igale sobivale päevale eraldi ja arvutada mediaan tulemustest (ennustus-

test). Sellel on kolm peamist põhjust:

• 1. Taimkatte fenoloogiline muutumine

Vegetatsiooniperioodi jooksul ei ole kanali väärtused staatilised. Taimkatte spektraalne sig-

natuur muutub pidevalt:

• Kevad: Kiire klorofülli teke, "punane serv" (Red Edge) on järsk, kuid lehestik võib olla

hõredam.

• Suvi: Maksimaalne biomass ja lehepinnaindeks, kuid võimalik kuivusstress (mõjutab

B11/B12 kanaleid).

• Sügis: Klorofülli vähenemine, niiskuse suurenemine.

Probleem mediaan satelliitpildiga: Kui me võtame terve suve piltide peale mediaani, siis me

"tasandame" need erinevused. Me loome sünteetilise spektraalse signatuuri, mida loodu-

ses ühelgi ajahetkel ei pruugi eksisteerida. Näiteks, kui märgala on mais vee all (madal pee-

geldus) ja juulis kuiv (kõrge peegeldus), siis mediaanpilt näitab "pool-niisket" olukorda, mis

võib mudeli segadusse ajada ja liigitada ala valesti.

• 2. Spektraalsete suhete säilitamine (Füüsikaline korrektsus)

Satelliitpildi iga piksel üksikul päeval esindab füüsikalist reaalsust – konkreetset päikese

nurka, atmosfääri seisundit ja taimkatte hetkeseisu.

• Üksikute päevade mudelid kasutavad puhtaid füüsikalisi seoseid (nt suhe B4 ja B8

vahel konkreetsel päeval).

• Mediaanpilt võib kombineerida erinevate päevade andmeid (nt punane kanal mai-

kuust ja NIR kanal augustist). See lõhub kanalitevahelised loomulikud korrelatsioonid,

mis on vajalikud just peente erinevuste (nt lehtpuu vs okaspuu või märgala vs mets)

tuvastamiseks.

• 3. Tulemuste mediaan vähendab juhuslikku müra ("Ensemble" efekt)

Lähenemine, kus igale päevale koostatakse eraldi mudel ja lõpuks võetakse ennustuste me-

diaan, toimib nagu ekspertide konsiilium:

• Kui meil on 10 sobivat päeva, siis meil on 10 "hinnangut" igale pikslile.

• Mõnel päeval võib tulemust mõjutada kerge vine, öine vihm (märjad lehed) või varjud.

See võib tekitada üksikus mudelis vea.

• Võttes tulemuste mediaani, filtreerime need ajutised anomaaliad välja. Kui 8 päeva

10-st ütleb, et tegemist on männikuga, ja 2 päeva (müra tõttu) pakub midagi muud, siis

mediaan annab tulemuseks õige klassi (männik).

Koostades mudeli igale päevale eraldi, säilitame me taimestiku sesoonse info ja füüsikalise

terviklikkuse. Tulemuste (mitte sisendandmete) agregeerimine tagab statistiliselt kõige sta-

biilsema ja usaldusväärsema klassifikatsiooni, mis on vähem tundlik üksikute päevade ilmas-

tikuolude suhtes.

• Satelliitpildi esmane andmetöötlus

• Eraldatakse 10 m ribad (B2, B3, B4, B8, SCL - Sentinel Cloud Mask) ja 20 m ribad

(B5, B6, B7, B8A, B11, B12).

• Andmete ühendamine ja filtreerimine:

• Ühendatakse kõigi selle päeva piltide väärtused.

• Andmed filtreeritakse vastavalt SCL (Scene Classification Layer) väärtustele, et

eemaldada pilved, vari ja lumi (kasutatakse SCL klasside 4 (Vegetation), 5 (Non-Ve-

getated) ja 6 (Water) piksleid).

• Eemaldatakse vead (B4 > 0) ja read, kus on puuduvad väärtused.

• Random Foresti treenimine:

• Iga päeva kohta treenitakse ranger paketiga (Random Forest) mudel, mis ennustab

metsa tõenäosust (probability = TRUE).

• Puude arv on seatud 30-le (optimaalsuse huvides).

• Mudeli salvestamine: Treenitud mudel salvestatakse iga päeva kausta (randomFo-

rest.rds).

6.6 Klassifitseerimine ja prognoos

Päevapõhiste mudelite abil arvutatakse metsa tõenäosus igale 5x5 km EPK-ruudule.

• Ruutude valik: Kasutatakse geograafilist kihti (eesti.gpkg), mis sisaldab EPK-ruutude

geomeetriat ja orbiidiinfot.

• Töötlemise järjekord: Klassifitseeritakse ainult need ruudud ja pildid, millel on olemas

mudel ja mille väljundfaili (TIF) veel ei eksisteeri.

• Klassifitseerimise töövoog:

• Laetakse vastav päeva Random Forest mudel.

• Loetakse Sentinel-2 ribad (10m ja 20m) ning projitseeritakse/lõigatakse need välja

5x5 km rastri (resolutsiooniga 5 või 10 meetrit - res = 5 või res = 10) šablooni järgi.

• Muudetakse piksliväärtused andmetabeliks.

• Filtreeritakse SCL-i järgi ja tehakse ennustus.

• Tulemus on Metsa tõenäosus väärtusega 0–100.

• Tulemused salvestatakse INT1U (0-255) TIF-failina spetsiifilisse kausta.

6.7 Lõpliku tõenäosuskaardi loomine

Lõpuks kombineeritakse kõigi kvalifitseeritud päevade klassifitseeritud tulemused üheks

koondmaskiks.

• Rastri kombineerimine: Kõik valitud TIF-failid ühe EPK-ruudu kohta (tavaliselt

5x5km) laetakse sisse ja laotakse kokku.

• Pikslite mediaani arvutamine: Kombineeritud rastrist arvutatakse piksli mediaan-

väärtus. See vähendab pilvedest ja varjudest tingitud müra ning annab stabiilsema

hinnangu.

Tulemuskaart teisendatakse 5 m piksliga rastriks, mis võimaldab täpsemalt määrata metsas

olevaid joonobjekte.

6.8 Aastate 2017-2025 tõenäosuste võrdlus

Metoodika testimiseks arvutati aastate 2017-2025 satelliitpiltide alusel metsasuse tõenäosu-

sed. Nende tulemuste puhul võrreldi nii pikslite tasemel aastate vahelist korrelatsiooni kui ka

SMI andmetega võrdluses tulemuste täpsust.

Tabelis on näha, et kahe järjestikuse aasta vahel on korrelatsioon suurem (>=0,95) ning mida

suurem on ajaline vahe, seda väiksemaks muutub ka korrelatsioon, mis on tingitud juba

maastikul toimuvatest muutustest.

Tabel 2. Aastate vaheline korrelatsioon

 A2017 A2018 A2019 A2020 A2021 A2022 A2023 A2024 A2025

A2017 1 0,95 0,94 0,93 0,92 0,91 0,92 0,91 0,9

A2018 0,95 1 0,97 0,96 0,94 0,93 0,94 0,94 0,92

A2019 0,94 0,97 1 0,97 0,95 0,94 0,95 0,94 0,93

A2020 0,93 0,96 0,97 1 0,96 0,95 0,95 0,95 0,94

A2021 0,92 0,94 0,95 0,96 1 0,95 0,96 0,95 0,94

A2022 0,91 0,93 0,94 0,95 0,95 1 0,96 0,95 0,94

A2023 0,92 0,94 0,95 0,95 0,96 0,96 1 0,97 0,95

A2024 0,91 0,94 0,94 0,95 0,95 0,95 0,97 1 0,96

A2025 0,90 0,92 0,93 0,94 0,94 0,94 0,95 0,96 1

Joonisel 6 on näha, et kõige suurem on ennustatud metsasuse tõenäosus metsamaal (ME)

ning põõsastikel (PS).

Joonis 6. Ennustatud metsasuse tõenäosuse jagunemine maakategooriate kaupa.

6.9 Testitud meetodid

Lisaks kasutusele võetud Random Forest mudelile katsetati käesoleva töö käigus ka teisi mu-

deleid, millega ennustada metsasuse tõenäosust satelliitpiltide alusel, aga nende ennustuse

täpsus jäi valdavalt alla 80%.

Testitud meetodid:

• PyTorch paketiga U-Net tehisnärvivõrkudel põhinev ruumist paiknemist arvestava mu-

delid erinevate parameetrite arvuga

• PyTorch paketiga pikslipõhine tehisnärvivõrkudel põhinev ruumilist paiknemist mitte

arvestavad mudelid erinevate parameetrite arvuga

• XGBoost mudel pikslipõhiseks klassifitseerimiseks

• GAM tõenäosuse mudel pikslipõhiseks klassifitseerimiseks

• Piiride tuvastamiseks segmenteeriti pilte, aga kuna metsa vahel on joonobjektid ning

metsa osas on spekter väga varieeruv, siis ei suutnud algoritm piisava täpsusega eris-

tada piire.

7 LiDAR-i andmete töötlus

LiDARi andmed on alla laaditavad EPK2T ruudustiku 1 km2 ruutude kaupa. Andmetöötluseks

on vajalik esmalt alla laadida kõik vajalikud ruudud, kus arvestatakse kogu Eesti katvust soo-

vitud kriteeriumite alusel.

Andmete alla laadimiseks filtreeritakse välja EPK2T andmestikust need ruudud, mis kattuvad

Eesti maismaa kaardikihiga. Kuna osad ruudud on ka meres, siis neid ei ole otstarbekas alla

laadida.

Projekti käigus on loodud skript, mis võimaldab automaatselt alla laadida kõik vajalikud Li-

DARi andmed, mida antud töötluse puhul kasutatakse. Kuna ühekordne Eestit kattev andmes-

tik võib olla kuni 1 TB suur (kogu andmestik 2008-2024, milles on koos tava ja metsanduslikud

andmed, on ca 4,4 TB), siis on väga oluline selle andmete haldamine, kuna nende eraldi hoid-

mine ei pruugi olla otstarbekas ning mõistlikum on töötlemise järgselt failid ära kustutada ning

jätta alles ainult tuletised, mille maht on oluliselt väiksem.

LiDARi andmete töötlemisel on esimeseks ülesandeks punktide kõrguse normaliseerimine

maapinna kõrgusmudeli alusel. Selleks kasutatakse antud töös Maa- ja Ruumiameti poolt

koostatud 10 m piksliga loodud DTM (geoportaalist DTM_10m_eesti.tif).

Andmetöötlusprotsessis loetakse esmalt sisse rlas paketiga LiDARi andmed, millest töötle-

mise andmemahu kokkuhoiu jaoks loetakse ainult xyz koordinaadid ning filtreeritakse välja

punktid klassidega 7 ja 18 (müra all ja ülal).

Järgmiseks sammuks on sisse lugeda DTM andmestik ainult antud ruudu ulatuses, et hoida

kasutatav andmestik minimaalsena. DTM on loodud kasutades kevadisi lende, et vältida maa-

pinna nihet taimkattest tulenevalt. Metsa all olev taimestik võib olla kuni 1 m kõrgune suvisel

ajal ning seetõttu tekib sellest maapinna kõrguse nihe ning sellega hinnatakse metsa kõrgus

alla.

Igale LiDARi punktile leitakse, milline on selle all olev maapinna kõrgus ning selleks tuleb es-

malt arvutada, milline on piksel antud punkti all ning seejärel võtta DTM andmestikust vastav

punkt. Selleks loetakse kodu DTM andmestik vektorina mällu ning igale LiDARi punktile lei-

takse, millise vektori elemendiga see kattub ning seejärel arvutatakse LiDARi punkti kõrguse

ja maapinna punkti vahena kõrgus maapinnast.

LiDARi andmetest arvutatakse 5 m piksli kohta välja võrastiku katvus (%). Käesolevas töös on

kasutatud lävendina 2 m, kuigi metsa puhul on lävendiks 1,3 m ning põhjuseks on konserva-

tiivne lähenemine, kuna maapinna kõrguse mudel võib olla mõningase määramatusega. 5 m

piksel võimaldab täpsemalt saada metsavaheliste joonobjektide piire ning samuti metsa piiri.

Kuna 5 m piksli sisse võib jääda vähe LiDARi punkte, siis järgmise sammuna arvutatakse sel-

lest rasterfailist naaberpiksleid arvestades mediaanväärtus ehk 3x3 piksli ala mediaan, mis

aitab siluda metsa sees olevaid mikrohäile, aga jätab alles metsa serva. Kui mediaan asemel

kasutada keskmist, siis hägustab see metsa serva.

8 Tulemuste kokku panemine

Protsess on realiseeritud R-keeles, kasutades hübriidmeetodit, mis ühendab Eesti Topograa-

fia Andmekogu (ETAK) vektorkihid ja kaugseire (LiDAR, Sentinel-2) rasterandmed. Eesmärk on

luua täpsustatud metsamaa ruumikuju, mis arvestab nii ametlikku maakasutust kui ka tege-

likku taimkatte olukorda.

Protsess jaguneb viieks põhietapiks:

• 1. Keskkonna ja alusrastri initsialiseerimine

Esmalt luuakse tühi põhiraster, mis määrab kogu edasise töötluse ruumilise ulatuse ja täp-

suse.

• Ruumiline ulatus: Eesti põhikaardi ruudustik (koordinaadid: 365000–740000,

6375000–6635000).

• Resolutsioon: 5 x 5 meetrit piksel (EPSG:3301).

• Andmetüüp: INT1U (täisarvud 0-255), optimeeritud LZW pakkimisega.

• 2. ETAK pinnaobjektide rasterdamine

Aluskaart moodustatakse ETAK pinnaobjektide kandmisega rastrisse.

• Pinnakihid: Skript loeb sisse kõik kaustas olevad ETAK „*_a.shp“ (alad) failid.

• Reklassifitseerimine: ETAK koodid teisendatakse üldistatud koodideks (funktsioon

arvuta_uus_kood), rühmitades maakasutustüübid.

• Prioriteetsus: Kihid kantakse rastrisse järjestikku, kusjuures hilisemad kihid kirjuta-

vad varasemad üle.

• Erandid:

o Hooned (E_401): Lisatakse eraldi kihina, et tagada hoonestuse välistamine

metsamaskist.

o Välised alad: Eesti maismaapiirist välja jäävad alad nullitakse.

• 3. Joonobjektide ja taristu lisamine

Joonobjektid (teed, liinid, kraavid) on metsamaskis olulised katkestajad. Need puhverdatakse

ja "põletatakse" alusrastrisse, lõigates läbi metsamassiivide (eelduseks on, et lõige toimub

vaid väärtuse 35 ehk metsa peal).

• Teed (E_501):

o Valim: Teed laiusega 3–8 meetrit.

o Töötlus: 5 m puhver (kogulaius 10 m).

• Vooluveekogud (E_203):

o Valim: Laius 20–40 meetrit.

o Töötlus: 5 m puhver.

• Elektriliinid (E_601) – Pingeipõhine puhverdamine:

o Liinid < 35 kV: 5 m puhver.

o Liinid ≥ 35 kV ja < 220 kV: 12.5 m puhver.

o Liinid ≥ 220 kV: 20 m puhver.

o Märkus: Elektriliinide puhul kasutatakse update=TRUE meetodit, mis kirjutab

üle kõik allasuvad klassid.

• 4. Kaugseire andmetega täpsustamine (järeltöötlus)

Selles etapis korrigeeritakse ETAK andmeid tegeliku taimkatte infoga, kasutades LiDAR (taim-

katte kõrgusmudel) ja Sentinel-2 (optiline satelliitpilt) andmeid.

Sisendandmed:

• LiDAR mask: Taimkate loetakse kõrgeks, kui lidar_cc_med.tif väärtus ≥ 30 (võra lii-

tus/kõrgusindeks). Siin on võimalik määrata võrastiku katvust erinevate tihedustega,

mis vastaks oodatud metsa definitsioonile.

• Sentinel-2 mask: Taimkate loetakse metsaks, kui S2_2025_med.tif tõenäosus ≥ 50%.

Korrigeerimisloogika:

1. Põõsastike ja niitude ümberhindamine: Kui ETAK klass on märgala või turbakarjäär

(koodid 36, 37), kuid LiDAR näitab kõrget taimestikku, määratakse klassiks Mets (35).

2. Lagedate alade ümberhindamine: Kui ETAK klass on lagedad alad või haritavad maad

(koodid 33, 34), kuid nii LiDAR kui ka Sentinel-2 kinnitavad metsa olemasolu, määra-

takse klassiks Mets (35).

3. Kaitsealused pargid: EELIS andmebaasi parkide kiht lisatakse eraldi (kood 38), kuid

seda töödeldakse metsamaskis sarnaselt metsaga.

4. Linna metsad: Täiendavalt lõigatakse välja saadud metsamaast linnad (asustusalad,

tüüp: 4 - linn, 5 - omavalitsuse sisene linn, 6 - linnaosa)

Lõplik rasterfail on etak_kood_mod_s4.tif, milles on maakasutuse kategooriad vastavalt ETAK

koodidele, mis on teisendatud kahekohaliseks jagades sajalised kümnega: 301 => 31, 302 =>

32 jne. See võimaldab hoida tulemusfaili väiksemana (raster on 8-bitine) ning teiste tulemus

võimaldab näha, mis on need muud kategooriad, millega metsamaa piirneb.

Viimase sammuna eraldatakse sellest metsamaa, mis arvutatakse kiht == 35 ning tulemuseks

on binaarne metsamaa kaardikiht metsamaa.tif.

Metsamaski testiti SMI andmete alusel, kust välja jäetud proovitükid, mis asuvad saadud met-

samaski puhul servast rohkem kui 20 m kaugusel, et vältida asukoha täpsusest tingitud valesti

klassifitseerimist. Tuleb arvestada, et 14% proovitükkidest asub metsa servale lähemal kui 20

m, mistõttu statistika põhineb 22 575 SMI proovitükil. Ennustuse täpsus on 97,4%, kappa koe-

fitsient 0,947.

Lõplik tulemus on rasterkaart, mida tellija saab vajadusel oma äranägemise järgi ka vektori-

seerida.

Käesoleva töö käigus saadud tulemusel on metsamaa pindala 2,441 miljonit hektarit.

9 Üleantavad tulemused

Käesoleva tööga antakse üle lisaks kirjeldatud metoodikale ka:

• arvutuste koodid (LISAD 1-4).

• 2025. aasta Sentinel-2 ja SMI andmete alusel on arvutatud ühe aasta metsasuse tõe-

näosuse kaart S2_2025_med.tif.

• 2020-2023. aasta suviste ALS lendude alusel on koostatud LIDARi katvuse kaart li-

dar_cc_med.tif.

• Saadud tulemuste põhjal kogu Eestit kattev täiendatud ETAK rasterkaart

etak_kood_mod_s4.tif.

• Viimasest on tuletatud metsamask.tif, kus on binaarne väärtus, kas piksliväärtus on 35

või mitte.

LISA 1. Sentinel-2 arvutuse kood
==

SEADISTUS JA PAKETID

==

Puhastame keskkonna, kui jooksutame interaktiivselt

if (interactive()) {

 rm(list = ls())

 gc()

 sapply(names(sessionInfo()$otherPkgs), function(x) {

 detach(paste0("package:", x), character.only = T)

 })

}

Laeme vajalikud paketid (kasutame pacman'i mugavaks laadimiseks)

if (!require("pacman"))

 install.packages("pacman")

pacman::p_load(sf,

 terra,

 ranger,

 mirai,

 glue,

 jsonlite,

 httr2,

 dplyr,

 purrr,

 progress)

Eeldame, et see fail tekitab muutuja 'cli_opt' (nt cli_opt$aasta)

ja defineerib 'workDir'

source("set_cli_params.R")

Hoiame alles algsed muutujad, et hiljem puhastamisel mitte kõike kustutada

algne_keskkond <- c(ls(), "algne_keskkond")

==

1. SENTINEL-2 NIMEKIRJA KOOSTAMINE

==

cat(glue::glue("Kontrollib Sentinel-2 aasta {cli_opt$aasta} nimekirja...\n"))

nimekiri_fail <- glue::glue("sentinel_nimekiri_{cli_opt$aasta}.csv")

if (!file.exists(nimekiri_fail)) {

 # Parameetrid

 paev_1 <- glue::glue("{cli_opt$aasta}-05-01T00:00:00Z")

 paev_2 <- glue::glue("{cli_opt$aasta}-09-30T23:59:59Z")

 bbox <- "22.5,57,28,60"

 # Soovitud ruutude nimekiri

 wgrd_nimed <- c(

 'T34VEK',

 'T34VEL',

 'T34VFK',

 'T34VFL',

 'T35VLE',

 'T35VLF',

 'T35VLG',

 'T35VMD',

 'T35VME',

 'T35VMF',

 'T35VMG',

 'T35VND',

 'T35VNE',

 'T35VNF'

)

 # API päringu koostamine

 base_url <- "https://catalogue.dataspace.coperni-

cus.eu/resto/api/collections/Sentinel2/search.json"

 params <- list(

 startDate = paev_1,

 completionDate = paev_2,

 cloudCover = "[0,20]",

 box = bbox,

 productType = "S2MSI2A",

 sortParam = "startDate",

 maxRecords = 2000,

 # Suurendasin veidi limiiti

 page = 1

)

 url_query <- paste0(names(params), "=", params, collapse = "&")

 full_url <- paste0(base_url, "?", url_query)

 # Andmete pärimine

 resp <- jsonlite::fromJSON(full_url)

 if (length(resp$features) == 0)

 stop("Andmeid ei leitud!")

 # Andmete töötlemine (base R asemel dplyr ahel)

 nimekiri <- resp$features$properties |>

 as_tibble() |>

 filter(relativeOrbitNumber %in% c(36, 136, 79)) |>

 mutate(

 guid = basename(services$download$url),

 ruut = substr(title, 39, 44),

 nimi = gsub("SAFE", "zip", title),

 kuupaev = substr(nimi, 12, 19)

) |>

 filter(ruut %in% wgrd_nimed)

 # Filtreerimine: ainult kuupäevad, kus on rohkem kui 5 pilti (kvaliteedikont-

roll)

 s2_tabel <- nimekiri |>

 group_by(kuupaev) |>

 filter(n() > 5) |>

 ungroup() |>

 select(nimi, guid, kuupaev, ruut)

 write.csv(s2_tabel, nimekiri_fail, row.names = FALSE)

 cat(glue::glue("Nimekiri salvestatud: {nrow(s2_tabel)} kirjet.\n"))

} else {

 cat("Nimekirja fail on juba olemas.\n")

}

Puhastame mälu (v.a algsed muutujad ja nimekiri_fail)

rm(list = setdiff(ls(), c(algne_keskkond, "nimekiri_fail")))

gc()

==

2. ALLALAADIMINE

==

cat("Alustan puuduvate failide allalaadimist...\n")

sentinel_nimekiri <- read.csv(nimekiri_fail)

Moodustame failiteed

sentinel_nimekiri$file_path <- file.path(

 workDir,

 "sentinel",

 cli_opt$aasta,

 sentinel_nimekiri$kuupaev,

 substr(sentinel_nimekiri$nimi, 1, 3),

 # Sentinel nime algus (nt S2A)

 sentinel_nimekiri$nimi

)

puudu_nimekiri <- sentinel_nimekiri |> filter(!file.exists(file_path))

if (nrow(puudu_nimekiri) > 0) {

 source("copsi_klass.R") # Eeldame, et copsi klass on siin

 s2class <- copsi$new()

 # Hankime esmased tokenid

 # NB! Tokenite kirjutamine kettale (c:/temp) on ebakindel.

 # Parem on hoida neid mälus s2class objektis.

 s2class$update_token(Sys.getenv("COPERNICUS_USERNAME"),

 Sys.getenv("COPERNICUS_PASSWORD"))

 pb <- progress_bar$new(format = " Laadimine [:bar] :current/:total (:per-

cent) eta: :eta", total = nrow(puudu_nimekiri))

 for (i in seq_len(nrow(puudu_nimekiri))) {

 pb$tick()

 rida <- puudu_nimekiri[i,]

 # Loome kausta

 if (!dir.exists(dirname(rida$file_path))) {

 dir.create(dirname(rida$file_path), recursive = TRUE)

 }

 # Värskendame tokenit iga faili eel (või kontrolli aegumist)

 # Lihtsustuse mõttes teeme update iga kord, kuigi see pole kõige efektiiv-

sem

 s2class$update_token(Sys.getenv("COPERNICUS_USERNAME"),

 Sys.getenv("COPERNICUS_PASSWORD"))

 # Päring

 req_url <- glue::glue(

 "https://download.dataspace.copernicus.eu/odata/v1/Pro-

ducts({rida$guid})/$value"

)

 tryCatch({

 httr2::request(req_url) |>

 httr2::req_auth_bearer_token(s2class$access_token) |>

 # Verbosity 0 on vaikne, progressi näitab meie väline loop

 httr2::req_perform(path = rida$file_path, verbosity = 0)

 }, error = function(e) {

 cat(glue::glue("\nViga faili {rida$nimi} laadimisel: {e$message}\n"))

 })

 }

} else {

 cat("Kõik failid on juba olemas.\n")

}

==

3. MUDELI TREENIMINE (Päeva kaupa)

==

Laeme SMI andmed (veendu, et failid on olemas)

load("data/prtosa.RData")

load("data/prt.RData")

cat("Valmistan ette treeningpunktid...\n")

Valmistame ette ruumiandmed (Ground Truth)

prt_valik <- prt |>

 filter(aasta >= cli_opt$aasta - 4, aasta <= cli_opt$aasta) |>

 select(aproovitykk_id, koord_n, koord_e, aasta) |>

 inner_join(

 prtosa |> select(aproovitykk_id, osa_nr, maakatgrp, maakategooria) |> fil-

ter(osa_nr == 0 &

maakategooria != "MM"),

 by = "aproovitykk_id"

) |>

 st_as_sf(

 coords = c("koord_e", "koord_n"),

 crs = 3301,

 remove = FALSE

)

test_ala <- rast(ext(365000, 740000, 6375000, 6635000),

 res = 10,

 crs = "epsg:3301")

mets_sf <- read_sf(r"(\mm_workdir\etak_data\ETAK_EESTI_SHP\E_305_puittaimes-

tik_a.shp)")

rst_mets <- rasterize(mets_sf, test_ala, background = 0)

rst_mets_f <- focal(rst_mets, 5, sum) %% 25 == 0

prt_valik$mitte_piir <- extract(rst_mets_f, prt_valik)[, 2]

write_sf(prt_valik, "smi_valik.sqlite")

cat(glue::glue("Punkte kokku: {nrow(prt_valik)}\n"))

Leiame kuupäeva-kaustad

sentinel_root <- file.path(workDir, "sentinel", cli_opt$aasta)

zip_files <- list.files(

 sentinel_root,

 pattern = "zip$",

 recursive = TRUE,

 full.names = TRUE

)

paev_dirs <- unique(dirname(zip_files))

Funktsioon, mis jooksutatakse paralleelselt ühel zip failil

process_zip_training <- function(zip_path, prt_valik) {

 tryCatch({

 # 10m ribad

 rst_1 <- terra::rast(zip_path, subds = 1)

 meta_1 <- jsonlite::fromJSON(

 sf::gdal_utils(

 "info",

 sf::gdal_subdatasets(zip_path)$SUBDATASET_1_NAME,

 options = "-json",

 quiet = TRUE

)

)

 names(rst_1) <- meta_1$bands$metadata[[1]]$BANDNAME

 # 20m ribad

 rst_2 <- terra::rast(zip_path, subds = 2)

 meta_2 <- jsonlite::fromJSON(

 sf::gdal_utils(

 "info",

 sf::gdal_subdatasets(zip_path)$SUBDATASET_2_NAME,

 options = "-json",

 quiet = TRUE

)

)

 names(rst_2) <- meta_2$bands$metadata[[1]]$BANDNAME

 # Extract väärtused

 vrt_1 <- terra::extract(rst_1, prt_valik, ID = FALSE)

 vrt_2 <- terra::extract(rst_2, prt_valik, ID = FALSE)

 # Kombineeri

 combined <- cbind(vrt_1, vrt_2)

 combined$maakat <- prt_valik$maakatgrp

 # Tagasta ainult täielikud read

 return(na.omit(combined))

 }, error = function(e)

 return(NULL))

}

Käime läbi päevade kataloogid

for (paev_dir in paev_dirs) {

 mudel_fail <- file.path(paev_dir, "randomForest.rds")

 if (!file.exists(mudel_fail)) {

 cat(glue::glue("Treenin mudelit kaustas: {basename(paev_dir)}\n"))

 zip_nimekiri <- list.files(paev_dir, "zip$", full.names = TRUE)

 # Paralleelne andmete lugemine

 daemons(min(length(zip_nimekiri), 4)) # Piirame tuumade arvu mõistlikult

 # Kogume andmed kõigist päeva piltidest

 data_list <- mirai_map(zip_nimekiri,

 process_zip_training,

 .args = list(prt_valik = subset(prt_valik,

mitte_piir)))[.progress]

 daemons(0) # Sulge workerid

 # Ühendame tulemused

 test_data <- do.call(rbind, data_list)

 if (is.null(test_data) || nrow(test_data) < 100) {

 cat(" Liiga vähe andmeid mudeli jaoks, jätan vahele.\n")

 next

 }

 # Filtreerimine (Pilved jms välja)

 # SCL klassid: 4 (Veg), 5 (Non-Veg), 6 (Water)

 valid_scl <- c(4, 5, 6)

 # Veergude valik (Band 2-8, 11, 12)

 cols_needed <- c("maakat", paste0("B", c(2:8, 11, 12)))

 train_df <- test_data |>

 filter((as.integer(SCL) - 1) %in% valid_scl) |>

 filter(B4 > 0) |> # Lihtne vigaste pikslite eemaldamine

 select(all_of(cols_needed)) |>

 mutate(maakat = factor(maakat))

 if (nrow(train_df) > 50) {

 # Treenime Random Forest mudeli

 # Ennustame: Kas on Mets (ME) või mitte

 rf_mud <- ranger::ranger(

 formula = factor(maakat == "ME") ~ .,

 data = train_df,

 num.trees = 50,

 # Optimeerimiseks vähendatud puude arvu

 probability = TRUE,

 num.threads = 4 # Rangeri sisemine paralleelsus

)

 save(rf_mud, file = mudel_fail)

 cat(" Mudel salvestatud.\n")

 }

 }

}

==

4. KLASSIFITSEERIMINE (Ennustamine)

==

cat("Alustan klassifitseerimist...\n")

eesti <- read_sf("data/eesti.gpkg")

Dünaamiline orbiitide töötlemine (R136, R036, R079)

Eeldame, et 'eesti' failis on veerud nimega R136, R036 jne, mis on 1/0

orbiidi_veerud <- grep("^R\\d+", names(eesti), value = TRUE)

epk_ruudud <- eesti |>

 st_drop_geometry() |>

 select(nr, wgrd_ruut, xmin, ymin, all_of(orbiidi_veerud)) |>

 tidyr::pivot_longer(

 cols = all_of(orbiidi_veerud),

 names_to = "orbiit",

 values_to = "on_orbiidis"

) |>

 filter(on_orbiidis == 1) |>

 select(-on_orbiidis)

Leiame kõik zip failid ja seostame need ruutudega

zip_failid <- list.files(sentinel_root,

 "zip$",

 recursive = TRUE,

 full.names = TRUE)

tootlus_nimekiri <- data.frame(zip_path = zip_failid) |>

 mutate(

 failinimi = basename(zip_path),

 wgrd_ruut = substr(failinimi, 39, 44),

 orbiit = substr(failinimi, 34, 37)

) |>

 inner_join(epk_ruudud,

 by = c("wgrd_ruut", "orbiit"),

 relationship = "many-to-many") |>

 mutate(

 tif_path = file.path(dirname(zip_path), "tiles", paste0(nr, ".tif")),

 olemas = file.exists(tif_path),

 # Mudeli fail peab olema zip failiga samas kaustas (vanemkaustas)

 mudel_path = file.path(dirname(zip_path), "randomForest.rds")

)

Filtreerime välja need, mis vajavad tegemist

tootlus_queue <- tootlus_nimekiri |>

 filter(!olemas) |>

 filter(file.exists(mudel_path)) # Ainult kui mudel on olemas

if (nrow(tootlus_queue) == 0) {

 cat("Kõik ruudud on juba klassifitseeritud või puuduvad mudelid.\n")

} else {

 # Jagame listiks mirai jaoks

 tiles_list <- split(tootlus_queue, seq(nrow(tootlus_queue)))

 tile_data <- tiles_list[[1]]

 # Töölisfunktsioon klassifitseerimiseks

 classify_worker <- function(tile_data) {

 library(terra)

 library(ranger)

 library(sf)

 library(jsonlite)

 # 1. Laeme mudeli (OLULINE: see peab toimuma tööli sees)

 load(tile_data$mudel_path)

 # 2. Rasterite lugemine (sarnane treenimisele)

 # 10m

 rst_1 <- terra::rast(tile_data$zip_path, subds = 1)

 meta_1 <- fromJSON(

 gdal_utils(

 "info",

 gdal_subdatasets(tile_data$zip_path)$SUBDATASET_1_NAME,

 options = "-json",

 quiet = T

)

)

 names(rst_1) <- meta_1$bands$metadata[[1]]$BANDNAME

 # 20m

 rst_2 <- terra::rast(tile_data$zip_path, subds = 2)

 meta_2 <- fromJSON(

 gdal_utils(

 "info",

 gdal_subdatasets(tile_data$zip_path)$SUBDATASET_2_NAME,

 options = "-json",

 quiet = T

)

)

 names(rst_2) <- meta_2$bands$metadata[[1]]$BANDNAME

 # 3. Lõikame välja õige 5x5km tüki (Template)

 ext_ruut <- ext(tile_data$xmin,

 tile_data$xmin + 5000,

 tile_data$ymin,

 tile_data$ymin + 5000)

 rst_template <- rast(ext_ruut, res = 5, crs = "epsg:3301") # NB! Panin

res=10 (Sentinel native), mitte 5

 # Project/Crop andmetest

 rst_inp_1 <- project(rst_1, rst_template)

 rst_inp_2 <- project(rst_2, rst_template)

 # Teeme andmed tabeliks

 # optimeerimine: töötle ainult valid piksleid

 stack <- c(rst_inp_1, rst_inp_2)

 df <- as.data.frame(stack, xy = TRUE, cells = TRUE)

 # Filter SCL järgi (4,5,6)

 valid_rows <- which(df$SCL %in% 4:6)

 if (length(valid_rows) > 10) {

 data_inp <- df[valid_rows,]

 # Ennustamine

 pred <- predict(rf_mud, data_inp)

 # Tulemused (tõenäosus * 100)

 vals <- as.integer(pred$predictions[, 2] * 100)

 # Kirjutame tulemused tühja rasterisse

 out_rst <- rast(rst_template)

 out_rst[] <- NA # Init with NA

 out_rst[data_inp$cell] <- vals

 # Salvestamine

 if (!dir.exists(dirname(tile_data$tif_path)))

 dir.create(dirname(tile_data$tif_path), recursive = T)

 writeRaster(

 out_rst,

 tile_data$tif_path,

 overwrite = TRUE,

 datatype = "INT1U",

 # 0-255

 gdal = c("COMPRESS=LZW", "TILED=YES")

)

 return(TRUE)

 }

 return(FALSE)

 }

 # Käivitame mirai

 daemons(n_max_workers_2) # Või n_max_workers_2, kui on defineeritud

 cat(glue::glue("Klassifitseerin {length(tiles_list)} ruutu...\n"))

 mirai_jobs <- mirai_map(tiles_list, classify_worker)

 pb <- progress_bar$new(format = " Sentinel klassifitseerimine [:bar] :percent

:current/:total (:eta)", total = length(tiles_list))

 print(status())

 while (unresolved(mirai_jobs)) {

 stats <- status()$mirai

 if (!is.null(stats)) {

 pb$update(stats[["completed"]] / sum(stats))

 }

 Sys.sleep(0.5)

 }

 daemons(0)

 cat("Töö valmis.\n")

}

LISA 2. LiDAR-i arvutamise kood

==

SEADISTUS JA PAKETID

==

Puhastame keskkonna, kui jooksutame interaktiivselt

if (interactive()) {

 rm(list = ls())

 gc()

 sapply(names(sessionInfo()$otherPkgs), function(x) {

 detach(paste0("package:", x), character.only = T)

 })

}

vorastiku_katvus <- 30

Laeme vajalikud paketid (kasutame pacman'i mugavaks laadimiseks)

if (!require("pacman"))

 install.packages("pacman")

pacman::p_load(sf,

 terra,

 ranger,

 mirai,

 lidR,

 glue,

 jsonlite,

 httr2,

 dplyr,

 purrr,

 progress)

source("set_cli_params.R")

laz_nimekiri <- read_sf("data/epk2t_nimekiri.sqlite")

head(laz_nimekiri)

laz_nimekiri$laz_path <- with(laz_nimekiri,

 file.path(

 "",

 "mm_workdir",

 "laz_by_epk",

 nr10000,

 nr,

 paste0(nr, "_", aasta, "_", tyyp, ".laz")

))

laz_nimekiri$puudu <- !file.exists(laz_nimekiri$laz_path)

laadi_nimek <- subset(laz_nimekiri, puudu)

i <- 1

if (nrow(laadi_nimek) > 0) {

 url <- "https://geoportaal.maaamet.ee/index.php?lang_id=1&plugin_act=ot-

sing&kaardiruut={ruut}&andmetyyp=lidar_laz_{tyyp}&dl=1&f={fi-

lename}&no_cache=693bef75b46f8&page_id=614"

 for (i in 1:nrow(laadi_nimek)) {

 cat(i, "\r")

 yks_fail <- laadi_nimek[i,]

 ruut <- yks_fail$nr

 tyyp <- yks_fail$tyyp

 filename <- basename(yks_fail$laz_path)

 download.file(glue::glue(url),

 yks_fail$laz_path,

 mode = "wb",

 quiet = T)

 }

}

las_nimek <- list.files(r"(H:\mm_workdir\laz_by_epk)",

 "laz",

 recursive = T,

 full.names = T)

library(mirai)

daemons(0)

daemons(64)

tulemus <- mirai_map(las_nimek, function(las_rada) {

 output <- gsub("laz$",

 "tif",

 gsub(

 "mm_workdir/laz_by_epk",

 "crown_cover",

 normalizePath(las_rada, winslash = "/")

))

 if (!file.exists(output)) {

 library(lidR)

 library(terra)

 set_lidr_threads(2)

 las <- readLAS(las_rada, select = "xyz", filter = "-drop_class 7 18")

 dtm <- crop(rast(r"(H:\01_metsamask\DTM_10m_eesti.tif)"), ext(las))

 las_n <- filter_poi(las - dtm, Z > -2 & Z < 50)

 if (!dir.exists(dirname(output))) {

 dir.create(dirname(output), recursive = T)

 }

 writeRaster(

 template_metrics(

 las_n,

 list(

 crown_cover = mean(Z > 2) * 100,

 p80 = quantile(Z[Z > 2], 0.8) * 10

),

 rast(round(ext(las), -1), res = 5, crs = "epsg:3301")

),

 output,

 datatype = "INT2U",

 overwrite = T,

 gdal = c("COMPRESS=LZW"),

 NAflag = 0

)

 }

 return(0)

})[.progress]

daemons(0)

LISA 3. Tulemuse kokku panemise kood

==

0. SEADISTUS

==

Puhastame keskkonna

if (interactive()) {

 rm(list = ls())

 gc()

 # Eemaldame laetud paketid, et vältida konflikte

 if (!is.null(sessionInfo()$otherPkgs)) {

 sapply(names(sessionInfo()$otherPkgs), function(x) {

 detach(paste0("package:", x), character.only = TRUE)

 })

 }

}

==

1. LOGIMISE FUNKTSIOON

==

Abifunktsioon teadete väljastamiseks koos kellaajaga

logi_teade <- function(teade) {

 cat(sprintf("[%s] %s\n", format(Sys.time(), "%H:%M:%S"), teade))

}

logi_teade("--- SKRIPT ALUSTAB TÖÖD ---")

Paketid

logi_teade("Laen vajalikud paketid...")

library(sf)

library(terra)

library(glue)

-

KONSTANDID JA RAJAD

-

logi_teade("Seadistan konstandid ja rajad...")

Rajad

PATH_TEMP <- "tmp"

PATH_ETAK <- r"(H:\mm_workdir\etak_data\ETAK_EESTI_SHP)"

PATH_OUTPUT <- "kihid/2025"

PATH_PUUDU <- "andmed/eesti_puudu.gpkg"

Rastrite seadistus

CRS_EST <- "epsg:3301"

RASTER_EXTENT <- ext(365000, 740000, 6375000, 6635000)

RASTER_RES <- 5

RASTER_TYPE <- "INT1U"

GDAL_OPTS <- c("COMPRESS=LZW", "TILED=YES")

Puhastame ja seadistame temp kausta

logi_teade("Valmistan ette ajutise (temp) kausta...")

if (!dir.exists(PATH_TEMP)) dir.create(PATH_TEMP, recursive = TRUE)

unlink(list.files(PATH_TEMP, full.names = TRUE))

terraOptions(

 tempdir = PATH_TEMP,

 datatype = RASTER_TYPE,

 todisk = T,

 verbose = F,

 #memfrac = 0.2

 memmax = 5

)

Loome väljundkausta

if (!dir.exists(PATH_OUTPUT)) {

 logi_teade(glue("Loon väljundkausta: {PATH_OUTPUT}"))

 dir.create(PATH_OUTPUT, recursive = TRUE)

}

-

ABIFUNKTSIOONID

-

arvuta_uus_kood <- function(kood) {

 kood %/% 100 * 10 + kood %% 100

}

==

2. PÕHIRASTRI LOOMINE JA PINNAOBJIKTID

==

logi_teade("Initsialiseerin tühja põhirastri...")

rst <- rast(RASTER_EXTENT, res = RASTER_RES, crs = CRS_EST)

Leiame kõik "_a.shp" lõpuga failid

kihid <- list.files(PATH_ETAK, pattern = "_a\\.shp$", full.names = TRUE)

logi_teade(glue("Leidsin {length(kihid)} pinnakihti töötlemiseks."))

koond_andmed <- NULL

logi_teade("--- Alustan pinnaobjektide rasterdamist ---")

for (kiht in kihid) {

 failinimi <- basename(kiht)

 nimi_ilma_laiendita <- tools::file_path_sans_ext(failinimi)

 logi_teade(glue("Töötlen faili: {failinimi}"))

 # Loeme sisse

 query_sql <- glue("SELECT kood FROM {nimi_ilma_laiendita}")

 kiht_andm <- read_sf(kiht, query = query_sql)

 # Arvutame uue koodi ja rasterdame

 if (nrow(kiht_andm) > 0) {

 kiht_andm$kood_u <- arvuta_uus_kood(kiht_andm$kood)

 logi_teade(glue(" -> Rasterdan {nrow(kiht_andm)} objekti..."))

 rst <- rasterize(kiht_andm, rst, field = "kood_u", update = TRUE)

 # Statistika

 pindala <- as.numeric(sum(st_area(kiht_andm)))

 koond_andmed <- rbind(koond_andmed, data.frame(kood = kiht_andm$kood_u[1],

pindala = pindala / 1E4))

 } else {

 logi_teade(" -> Hoiatus: Fail on tühi, liigun edasi.")

 }

}

==

3. ERANDID JA LISAKIHID (HOONED, PUUDUVAD ALAD)

==

Eesti maismaast välja jääva osa nullimine

if (file.exists(PATH_PUUDU)) {

 logi_teade("Töötlen 'puuduvaid alasid' (välised alad)...")

 liigne <- read_sf(PATH_PUUDU)

 liigne$kood_u <- 0

 rst <- rasterize(liigne, rst, field = "kood_u", update = TRUE)

 logi_teade(" -> Välised alad nullitud.")

} else {

 logi_teade("INFO: Puuduvate alade faili ei leitud, jätan vahele.")

}

Hoonete lisamine (E_401)

logi_teade("Töötlen hooneid (E_401)...")

fail_hoone <- file.path(PATH_ETAK, "E_401_hoone_ka.shp")

if (file.exists(fail_hoone)) {

 nimi_hoone <- tools::file_path_sans_ext(basename(fail_hoone))

 hoone_andm <- read_sf(fail_hoone, query = glue("SELECT kood FROM

{nimi_hoone}"))

 hoone_andm$kood_u <- arvuta_uus_kood(hoone_andm$kood)

 logi_teade(glue(" -> Lisan {nrow(hoone_andm)} hoonet rastrisse..."))

 rst <- rasterize(hoone_andm, rst, field = "kood_u", update = TRUE)

} else {

 logi_teade("VIGA: Hoonete faili ei leitud!")

}

==

4. JOONOBJEKTID (TEED JA VOOLUVEEKOGUD)

==

process_linear_feature <- function(failitee, sql_query, buffer_size, ras-

ter_obj, target_val = 35) {

 failinimi <- basename(failitee)

 logi_teade(glue("Töötlen joonobjekti: {failinimi}"))

 if (!file.exists(failitee)) {

 logi_teade(glue(" -> VIGA: Faili {failinimi} ei leitud!"))

 return(raster_obj)

 }

 logi_teade(" -> Loen andmeid...")

 andmed <- read_sf(failitee, query = sql_query)

 andmed$kood_u <- arvuta_uus_kood(andmed$kood)

 logi_teade(glue(" -> Puhverdan {nrow(andmed)} objekti ({buffer_size}m)..."))

 puhverdatud <- st_buffer(andmed, buffer_size)

 logi_teade(" -> Rasterdan ajutisse kihti...")

 kiht_kood <- andmed$kood_u[1]

 line_rast <- rasterize(puhverdatud, raster_obj, field = "kood_u")

 logi_teade(glue(" -> Maskeerin (kirjutan üle vaid väärtuse {target_val}

peal)..."))

 mask_logic <- (line_rast == kiht_kood) & (raster_obj == target_val)

 raster_obj[mask_logic == 1] <- kiht_kood

 logi_teade(" -> Valmis.")

 return(raster_obj)

}

Teed (E_501)

rst <- process_linear_feature(

 failitee = file.path(PATH_ETAK, "e_501_tee_j.shp"),

 sql_query = "SELECT kood FROM e_501_tee_j WHERE laius >= 3 AND laius <= 8",

 buffer_size = 5,

 raster_obj = rst

)

Vooluveekogud (E_203)

rst <- process_linear_feature(

 failitee = file.path(PATH_ETAK, "E_203_vooluveekogu_j.shp"),

 sql_query = "SELECT kood FROM E_203_vooluveekogu_j WHERE laius >= 20 AND

laius <= 40",

 buffer_size = 5,

 raster_obj = rst

)

Salvestame vahetulemuse

output_orig <- file.path(PATH_OUTPUT, "etak_kood_orig.tif")

logi_teade(glue("Salvestan vahetulemuse: {output_orig}"))

writeRaster(rst, output_orig, gdal = GDAL_OPTS, datatype = RASTER_TYPE, NAflag

= 0, overwrite = TRUE)

==

5. ELEKTRILIINID (ERILINE PUHVRILOOGIKA)

==

logi_teade("Töötlen elektriliine (E_601)...")

fail_elekter <- file.path(PATH_ETAK, "E_601_elektriliin_j.shp")

if (file.exists(fail_elekter)) {

 logi_teade(" -> Loen ja filtreerin elektriliine...")

 elekter_andm <- read_sf(fail_elekter, query = "SELECT kood, nimipinge FROM

E_601_elektriliin_j")

 elekter_andm <- subset(elekter_andm, !is.na(nimipinge))

 elekter_andm$kood_u <- arvuta_uus_kood(elekter_andm$kood)

 # Puhvri määramine

 elekter_andm$puhver_raadius <- 5

 elekter_andm$puhver_raadius[elekter_andm$nimipinge >= 35] <- 12.5

 elekter_andm$puhver_raadius[elekter_andm$nimipinge >= 220] <- 20

 logi_teade(" -> Puhverdan ja rasterdan (update=TRUE)...")

 etak_mod <- rasterize(st_buffer(elekter_andm, elekter_andm$puhver_raadius),

rst, field = "kood_u", update = TRUE)

 output_mod <- file.path(PATH_OUTPUT, "etak_kood_mod.tif")

 logi_teade(glue("Salvestan elektriliinidega rastri: {output_mod}"))

 writeRaster(etak_mod, output_mod, gdal = GDAL_OPTS, datatype = RASTER_TYPE,

NAflag = 0, overwrite = TRUE)

} else {

 logi_teade("VIGA: Elektriliinide faili ei leitud!")

 etak_mod <- rst # Jätkame ilma elektriliinideta

}

==

6. JÄRELTÖÖTLUS (LIDAR JA S2)

==

logi_teade("Vabastan mälu (gc)...")

gc()

logi_teade("Alustan järeltöötlust (LiDAR ja Sentinel)...")

fail_lidar <- file.path(PATH_OUTPUT, "lidar_cc_med.tif")

fail_msi <- file.path(PATH_OUTPUT, "S2_2025_med.tif")

if (file.exists(fail_lidar) && file.exists(fail_msi)) {

 logi_teade(" -> Loen LiDAR ja Sentinel maskid sisse...")

 lidar_mask <- rast(fail_lidar) >= 30

 msi_mask <- rast(fail_msi) >= 50

 # 1. Korrektsioon

 logi_teade(" -> Korrektsioon 1: Koodid 36,37 + LiDAR kõrge -> 35")

 etak_mod[etak_mod %in% c(36,37) & lidar_mask == 1] <- 35

 out_s1 <- file.path(PATH_OUTPUT, "etak_kood_mod_s1.tif")

 logi_teade(glue(" -> Salvestan etapp 1: {out_s1}"))

 writeRaster(etak_mod, out_s1, gdal = GDAL_OPTS, datatype = RASTER_TYPE,

NAflag = 0, overwrite = TRUE)

 # 2. Korrektsioon

 logi_teade(" -> Korrektsioon 2: Koodid 33,34 + LiDAR kõrge + MSI kõrge ->

35")

 on_lage <- etak_mod %in% c(33, 34)

 etak_mod[on_lage & lidar_mask & msi_mask] <- 35

 out_s2 <- file.path(PATH_OUTPUT, "etak_kood_mod_s2.tif")

 logi_teade(glue(" -> Salvestan lõpptulemuse: {out_s2}"))

 writeRaster(etak_mod, out_s2, gdal = GDAL_OPTS, datatype = RASTER_TYPE,

NAflag = 0, overwrite = TRUE)

 gc()

 #etak_mod <- rast(out_s2)

 logi_teade(glue(" -> Filtreerin metsamaa"))

 metsamaa <- etak_mod == 35

 logi_teade(glue(" -> Eemaldan augud < 0.1 ha"))

 metsamaa_s <- sieve(metsamaa, 41, 4)

 etak_mod[metsamaa & metsamaa_s == 0] <- 38

 out_s3 <- file.path(PATH_OUTPUT, "etak_kood_mod_s3.tif")

 logi_teade(glue(" -> Salvestan lõpptulemuse: {out_s3}"))

 writeRaster(etak_mod, out_s3, gdal = GDAL_OPTS, datatype = RASTER_TYPE,

NAflag = 0, overwrite = TRUE)

 if(!"etak_mod" %in% ls()){

 etak_mod <- rast(out_s3)

 }

 #===

 logi_teade("Töötlen eelise pargid ...")

 fail_pargid <- file.path(PATH_ETAK, "eelis_pargid.shp")

 hoone_andm <- read_sf(fail_pargid)

 hoone_andm$kood_u <- 38

 logi_teade(glue(" -> Lisan {nrow(hoone_andm)} hoonet rastrisse..."))

 etak_mod <- rasterize(hoone_andm, etak_mod, field = "kood_u", update = TRUE)

 out_s4 <- file.path(PATH_OUTPUT, "etak_kood_mod_s4.tif")

 logi_teade(glue(" -> Salvestan lõpptulemuse: {out_s4}"))

 writeRaster(etak_mod, out_s4, gdal = GDAL_OPTS, datatype = RASTER_TYPE,

NAflag = 0, overwrite = TRUE)

 jagunemine <- freq(etak_mod)

 jagunemine$pindala <- jagunemine$count * 0.0025

 mets_sf <- as.polygons(ifel(etak_mod == 35, 1, NA))

 unlink(file.path(PATH_OUTPUT, "metsamaa_s1.sqlite"))

 writeVector(mets_sf, file.path(PATH_OUTPUT, "metsamaa_s1.sqlite"), filetype =

"SQLite")

 mets_sf <- read_sf(file.path(PATH_OUTPUT, "metsamaa_s1.sqlite"))

 mets_sf_m <- st_cast(mets_sf, "POLYGON")

 write_sf(mets_sf_m, file.path(PATH_OUTPUT, "metsamaa_s2.sqlite"))

 logi_teade("Järeltöötlus valmis!")

} else {

 logi_teade("HOIATUS: LiDAR või Sentinel failid puuduvad, jätan järeltöötluse

vahele.")

}

logi_teade("--- SKRIPT LÕPETAS EDUKALT ---")

LISA 4. Käsurea parameetrite skript
suppressPackageStartupMessages(library("optparse"))

option_list <- list(

 make_option(

 c("-v", "--verbose"),

 action = "store_true",

 default = TRUE,

 help = "Print extra output [default]"

),

 make_option(

 c("-q", "--quietly"),

 action = "store_false",

 dest = "verbose",

 help = "Prindi väljund"

),

 make_option(

 c("-o", "--overwrite"),

 action = "store_false",

 dest = "overwrite",

 default = F,

 help = "Kirjutab üle"

),

 make_option(

 c("-a", "--aasta"),

 type = "integer",

 default = as.numeric(substr(Sys.Date(), 1, 4)),

 help = "Arvutuse aasta [vaikimisi %default]",

 metavar = "number"

),

 make_option(c("-z", "--zip_path"), help = "Ühe Sentinel-2 zip faili rada")

)

cli_opt <- parse_args(OptionParser(option_list = option_list))

n_max_workers_2 = as.integer(parallel::detectCores() / 2)

n_max_workers_3 = as.integer(parallel::detectCores() / 3)

workDir = file.path(substr(getwd(), 1, 2), "mm_workdir")

dtm_inp_path <- file.path(getwd(), "data", "DTM_10m_eesti.tif")

tif_out_path <- file.path(workDir, "tif_data")

mtr_out_path <- file.path(workDir, "lidar_meetrik")

laz_inp_path <- file.path(workDir, "laz_data")

etk_inp_path <- file.path(workDir, "etak_data")

